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Homogenization is an important mathematical framework for developing ef-
fective models of differential equations with oscillations. We include in the
presentation techniques for deriving effective equations, a brief discussion on
analysis of related limit processes and numerical methods that are based on
homogenization principles. We concentrate on first- and second-order partial
differential equations and present results concerning both periodic and ran-
dom media for linear as well as nonlinear problems. In the numerical sections,
we comment on computations of multi-scale problems in general and then
focus on projection-based numerical homogenization and the heterogeneous
multi-scale method.
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1. Introduction

In this paper we present a very broad overview of the general subject of ho-
mogenization. The term homogenization is used in many areas for mecha-
nisms that make a mixture or a process the same (homogeneous) throughout
a domain. In mathematics the term is most commonly used in connection
with the study of problems (differential equations) with rapidly variable co-
efficients. There are many variations and extensions, some purely theoretical
and others of important practical value. Overall, the idea is to consider a
complex multi-scale system, analyse its limit properties and approximate it
by a simpler homogenized one.

Consider a general differential equation

Fε(u
ε, x) = 0

depending on a small parameter ε with solution uε : R
d → R. The natural

mathematical questions are whether the family (uε)ε>0 converges, as ε → 0,
in some topology to a limit u0, and if so, whether that limit satisfies a
separate ‘homogenized’ equation

F̄ (u0, x) = 0.

To give a flavour of the problem and to introduce some of the basic
concepts, we consider first the very simple example of a two-point boundary
value problem:

{
−(aε(x)uε

x)x = f in (0, 1),

uε(0) = uε(1) = 0,
(1.1)

with

aε(x) = a(x/ε) > 0 and 1-periodic in y.

The coefficient aε is highly oscillatory when ε is small, because of the
periodicity of a, and, as ε → 0, converges weakly to its arithmetic mean.

It is straightforward to check, after integrating the differential equation
in (1.1), dividing by aε and integrating again, that the solution uε of (1.1)
is given by

uε(x) = −
∫ x

0

(
aε(ξ)−1

∫ ξ

0
f(η) dη + Cε

)
dξ,

with the constant of integration

Cε = −
∫ 1

0

(
aε(ξ)−1

∫ ξ

0
f(η) dη

)
dξ

/ ∫ 1

0
aε(ξ)−1 dξ

determined by the boundary condition at x = 1.
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Given this explicit formula of the solution, we now let ε → 0 to find that

uε(x) → u0(x) = −aH

∫ x

0

(∫ ξ

0
f(η) dη + C

)
dξ, (1.2)

and

Cε → C = −
∫ 1

0

(∫ ξ

0
f(η) dη

)
dξ, (1.3)

where

aH =

(∫ 1

0
a(y)−1 dy

)−1

.

It follows that u0 satisfies the homogenized two-boundary value problem
where aε is replaced by aH , which is typically different from the arithmetic
mean of aε,

{
−aHu0xx = f in (0, 1),

u0(0) = u0(1) = 0.
(1.4)

The coefficient aH can be seen as a homogenized or effective material co-
efficient, if aε represents an original material property, such as, for example,
the conductivity of a composite material.

Problem (1.4) is of course much easier to analyse than the original (1.1).
It is also much better suited for computations since any discretization does
not need to resolve the small ε-scale of (1.1).

The problem can easily become more complicated. Consider, for example,
the non-divergence-form two-point boundary value problem




−uε

xx +
1

ε
bε(x)uε

x = f in (0, 1),

uε(0) = uε(1) = 0,

(1.5)

where

bε(x) = b(x/ε) with b 1-periodic and

∫ 1

0
b(y) dy = 0. (1.6)

As before, bε is highly oscillatory when ε is small, and converges weakly,
as ε → 0, to its arithmetic mean.

It is again an exercise, albeit slightly more elaborate, to check that the
solution uε is given by

uε(x) =

∫ x

0
eB(y/ε) dy Cε −

∫ x

0
eB(y/ε)

∫ y

0
e−B(z/ε)f(z) dz, (1.7)
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with the constant of integration

Cε =

(∫ 1

0
eB(ξ/ε) dy

)−1 ∫ 1

0
eB(x/ε)

∫ ξ

0
e−B(y/ε)f(y) dy dξ

determined by the boundary condition at x = 1, and

B(y) =

∫ y

0
b(ξ) dξ.

It is possible to check directly that, as ε → 0, uε → u0, where u0 solves
the averaged boundary value problem

{
−aHu0xx = f in (0, 1),

u0(0) = u0(1) = 0,
(1.8)

with the homogenized coefficient aH given by

aH =

[∫ 1

0
e−B(y) dy

∫ 1

0
eB(y) dy

]−1

. (1.9)

Second-order equations in non-divergence form are closely related, via
Itô’s calculus, to solutions of stochastic differential equations (sde for short).
If (Wt)t∈R is a standard Brownian motion, the sde corresponding to (1.5) is

dXε
t = −1

ε
bε(Xε

t ) dt +
√

2 dWt. (1.10)

The asymptotics, as ε → 0, of the solution of (1.10) are closely related to
the behaviour, as ε → 0, of the uε of (1.5). As a matter of fact there is a
probabilistic proof which yields that, as ε → 0, Xε

t → X0
t , in the appropriate

sense, where

dX0
t =

√
2 aH dWt with X0

0 = x, (1.11)

with aH given by (1.9).
In general it is not possible to derive closed-form expressions for the lim-

iting solution, and other techniques must be used. It is also not always the
case that the homogenized equations have the same form as the original
solution, as can be seen in the homogenization of scalar conservation laws.

The general theory deals with more sophisticated homogenization prob-
lems in higher dimensions and more complicated linear and nonlinear equa-
tions in periodic, almost periodic and, more generally, random environ-
ments. In this paper we discuss only linear and fully nonlinear first- and
second-order equations in periodic and random settings.

There are several approaches to the study of homogenization depending
on the exact form of the problem at the level of the ε-scale, and the nature
of the environment (periodic, random, etc.). In this paper we discuss a
number of them, but not all. The first method, which is used most often,
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especially at the formal level, is based on the construction of asymptotic
expansions. This approach provides the homogenized equation but it is oc-
casionally difficult to make rigorous due to lack of regularity. The second
method, known as the energy method, is applied to problems which admit a
variational formulation. A third method, known as two-scale convergence,
is often used very effectively in variational problems and combines elements
of the first two. A fourth method is based on probabilistic arguments and is
used, of course, when the problem has a probabilistic interpretation. When
dealing with nonlinear problems it is often necessary to adapt the general
methodologies to accommodate the specific nonlinear structure. Some of
the approaches used here include Γ-convergence, an effective tool for prob-
lems with variational formulation, and the perturbed-test function method
typically used for (nonlinear) non-variational problems.

Even if some ideas in homogenization date further back, the early de-
velopments of the 1970s are fundamental. This is very well presented in
the text from 1978 by Bensoussan, Lions and Papanicolaou (1978), which
develops a systematic framework for asymptotic analysis. Influential con-
temporary contributions are the multi-scale analysis of Keller (1977), the
homogenization techniques of Babuška (1976), the G-convergence theory of
De Giorgi and Spagnolo (1973) and the analysis of Murat and Tartar (1997).

Lions, Papanicolaou and Varadhan (1983) were the first to consider the
homogenization of first- and second-order fully nonlinear equations in the
periodic setting. An influential contribution to the subject were the pa-
pers by Evans (1989, 1992). The literature for random homogenization is
more limited. Papanicolaou and Varadhan (1979, 1981) and Kozlov (1985)
were the first to consider the homogenization of uniformly elliptic linear
divergence-form and non-divergence-form elliptic operators. The first non-
linear results in the variational setting were obtained by Dal Maso and
Modica (1986) and in the non-variational setting by Souganidis (1999),
Lions and Souganidis (2003), Kosygina, Rezakhanlou and Varadhan (2006)
and Caffarelli, Souganidis and Wang (2005).

After the early period the development of homogenization has acceler-
ated. In one direction there are many new results on nonlinear problems
and stochastic equations, some of which are mentioned above. There is
now also a wide literature on applications in solid and fluid mechanics. In
another direction, theoretical tools developed in the context of homogeniza-
tion, such as compensated compactness Γ-, G- and H-convergence, have
been of great value in other areas of partial differential equations. Some
of these later results will be discussed below but it is outside the scope of
this paper to give an extensive review of the literature. We refer, for exam-
ple, to the recent texts by Jikov, Kozlov and Oleinik (1991), Allaire et al.

(1993), Cioranescu and Donato (2000), Marchenko and Khruslov (2006) and
Pavliotis and Stewart (2007).
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The purpose of this paper is to give easily accessible examples of the
basic theory and recent progress. An important aspect is also the cou-
pling of asymptotic and numerical methods. The first part (Sections 2 to
7) describes the general problem and is devoted to the analytic aspects of
the theory, while the last three sections are devoted to numerical homog-
enization. In Section 2 we discuss the homogenization theory for linear
divergence-form second-order elliptic partial differential equations (pdes)
in the periodic setting. Linear second-order elliptic pdes in non-divergence
form are discussed in Section 3. In Section 4 we consider nonlinear first-
and second-order pdes, in either divergence or non-divergence form, always
in periodic media. In Section 5 we provide a general overview of the theory
in the stationary ergodic environments, while in Section 6 we present results
about rates of convergence. A few applications are given in Section 7 to il-
lustrate the variety of homogenization results. In the second part (Sections
8 to 10) we start with a general discussion of numerical homogenization in
Section 8, followed by two special techniques in Sections 9 and 10.

We conclude by remarking that homogenization is a very broad topic
which cannot in all fairness be described in a few pages. The reader should
keep in mind that here we only attempt to provide a short introduction and
hope to stimulate further study of the subject. The same applies to the
references. There are literally thousands of papers devoted to the different
parts of the theory. Here we only refer to the ones which are relevant to the
particular problems we discuss.

A final remark is that throughout the paper we will denote by C positive
constants which are independent of ε.

2. Periodic homogenization for linear divergence-form

second-order elliptic PDEs

We consider here the divergence-form elliptic boundary value problem



−div

(
A

(
x

ε

)
Duε

)
= f in U,

uε = 0 on ∂U,

(2.1)

which, using the summation convention, is rewritten as



−

(
aij

(
x

ε

)
uε

xj

)

xi

= f in U,

uε = 0 on ∂U.

(2.2)

The matrix function A = (aij)1≦i,j≦d is assumed to be

symmetric, continuous and Y -periodic, (2.3)
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where Y is the unit cube, and
{

uniformly elliptic, i.e., there exist λ, Λ > 0 such that,

for all ξ, y ∈ R
N , Λ|ξ|2 ≧ aij(y)ξiξj ≧ λ|ξ|2,

(2.4)

where |·| denotes the Euclidean norm and we have used the usual summation
convention.

A function uε ∈ H1
0 (U), the Sobolev space of functions vanishing on the

boundary ∂U which, together with their derivatives, are square-integrable
in U , is defined to be a solution of (2.1) if, for all v ∈ H1

0 (U),

aε(u
ε, v) = (f, v), (2.5)

where, for f ∈ L2(U) and u, v ∈ H1
0 (U),

(f, v) =

∫

U
fv dx and aε(u, v) =

∫

U
aij

(
x

ε

)
uxjvxi dx.

The problem is well defined in H1
0 (U). For f ∈ L2(U), it admits a unique

solution uε ∈ H1
0 (U) satisfying the estimate

‖uε‖H1
0 (U) ≦ C‖f‖L2(U). (2.6)

The two-point boundary value problem (1.1) is a special case of (2.1). Its
variational formulation is

∫ 1

0
a

(
x

ε

)
uε

xvx dx =

∫ 1

0
fv dx for all v ∈ H1

0 (0, 1). (2.7)

To explain the difficulties arising in the study of the behaviour, as ε → 0,
of (2.1), we proceed with (1.1). Taking v = uε in (2.7), we find

‖uε‖H1
0 (0,1) ≦ C.

Therefore we may extract subsequences, still denoted by uε, such that, as
ε → 0,

uε → u weakly in H1
0 (0, 1).

Recall also that, as ε → 0, we have weak ∗ convergence

a

( ·
ε

)
→ 〈a〉 =

∫ 1

0
a(y) dy in L∞(0, 1).

It is therefore natural to expect that, in the limit ε → 0, we have

−(〈a〉ux)x = f in (0, 1),

an equation which is not satisfied, as we already know from the discussion
in the Introduction.



154 B. Engquist and P. E. Souganidis

Next we present an argument that is not based on having an exact formula
and yields the correct answer. To this end, let

ξε = aεuε
x.

Since the aεs are bounded, it follows that the family (ξε)ε>0 is bounded
in L2(0, 1), and, since it satisfies

−ξε
x = f,

is actually bounded in H1(0, 1). Therefore, along subsequences ε → 0,

ξε → ξ in L2(0, 1) and ξε
x → ξx weakly in L2(0, 1).

In view of the above,

1

aε
ξε ⇀

〈
1

a

〉
ξ weakly in L2(0, 1) and − ξx = f.

Since
1

aε
ξε = uε

x,

we conclude that

ux =

〈
1

a

〉
ξ and −

(〈
1

a

〉−1

ux

)

x

= f.

We now present the method of the asymptotic expansion, which is very
convenient and is a common technique for obtaining homogenized equations.
The justification may need other general tools.

To study the asymptotic behaviour of the solutions of (2.1), we form a
two-scale expansion in ε and then match terms of the same order in ε.

We begin with the ansatz that

uε(x) = u0(x, x/ε) + εu1(x, x/ε) + ε2u2(x, x/ε) + · · · , (2.8)

with uj(x, y) (j = 0, 1, 2, . . .) Y -periodic in y.
If we regard x and y as separate variables, applied to a function φ(x, x/ε),

the differentiation operator Dx becomes Dx + 1
εDy. Then, if

Aεv = −div

(
A

(
x

ε

)
Dv

)
,

we may write

Aε = ε−2A1 + ε−1A2 + ε0A3 + · · · ,

with 



A1 = −divy(A(y)Dy),

A2 = −divy(A(y)Dx) − divx(A(y)Dy),

A3 = −divx(A(y)Dx).

(2.9)
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Using the assumed expansion, the equation yields




(i) A1u0 = 0,

(ii) A1u1 + A2u0 = 0,

(iii) A1u2 + A2u1 + A3u0 = f.

(2.10)

The homogenized operator is then constructed from (2.10).
Before we continue with the analysis, we recall the classical Fredholm

alternative argument, which states that
{

Bφ = F in Y,

φ Y -periodic,
(2.11)

where B is a general second-order operator in either divergence or non-
divergence form, has a solution if and only if

∫

Y
F (y)m(y) dy = 0,

where m is an invariant measure, i.e., the unique solution of the adjoint
equation {

B∗m = 0 in Y,

m Y -periodic,
(2.12)

with

m > 0 and

∫

Y
m(y) dy = 1. (2.13)

We return now to the asymptotic analysis of (2.1).
Since the only periodic solutions of (2.10(i)) are constants in y, we have

u0(x, y) = u(x),

and therefore (2.10(ii)) reduces to
{
−divy(A(y)Dyu1) = divy(A(y)Dxu0) in Y,

u1 Y -periodic in y,
(2.14)

which, in view of the previous discussion, admits a unique solution by Fred-
holm’s alternative, up to addition of a constant. Indeed, here for (2.14) we
can take m ≡ 1. It is then immediate that∫

Y
divy(A(y)Dxu0)m dy = 0.

The special form of the right-hand side of (2.14) allows us to represent
u1 as

u1(x, y) = w · Dxu0 + ũ(x), (2.15)
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where each component of w = (w1, . . . , wd) is the unique (up to additive
constants) solution of the cell problem

{
−divy(A(y)Dywi) = divy(Aei) in U,

wi Y -periodic in y.
(2.16)

Applying the Fredholm alternative once again to (2.10(iii)), recalling that
the average of f − A2u1 − A3u0 over Y must be zero, and replacing u1 by
(2.15) leads to the homogenized equation

{
−div(ĀDu0) = f in U,

u0 = 0 on ∂U,
(2.17)

with the effective matrix Ā = (āij)1≦i,j≦d given by

āij =

∫

Y
aij(y)(Dywi + ei)(Dywj + ej) dy. (2.18)

Notice that the matrix Ā is uniformly elliptic. Moreover, since it is con-
stant, (2.17) can also be written in the non-divergence form

{
− tr ĀD2u0 = f in U,

u0 = 0 on ∂U.

Although the method of the asymptotic expansion is simple, it is often
difficult to implement, since it is based on establishing the expansion (2.8).
It is, however, very useful to guess the homogenized problem. A second step
is then required to prove the actual convergence of the uεs to u0. The latter
can be established by several methods, such as maximum principle, Γ- or
G-convergence, etc. An effective method, known as the energy method, was
introduced in Tartar (1977). It is based on the choice of appropriate test
functions in the variational formulation (2.5) of (2.1) which says that, for
all v ∈ H1

0 (U),
∫

U

(
A

(
x

ε

)
Duε(x) · Dv(x)

)
dx =

∫

U
f(x)v(x) dx. (2.19)

As already discussed in the one-dimensional case, it is not possible to
pass to the limit ε → 0 in the left-hand side of (2.19) for every v, since the
families (A( ·

ε))ε>0 and (Duε)ε>0 are only weakly convergent. The idea of
the energy method is to use an appropriate family vε of test functions to
pass in the limit ε → 0 taking advantage of the ‘compensated compactness’
which takes place. This family of test functions is given by

vε(x) = v(x) + εw̃

(
x

ε

)
· Dv(x), (2.20)
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with v a smooth H1
0 function and w̃ = (w1, . . . , wd) the solution of the

adjoint cell problem
{
−div(A∗(y)(Dyw̃i + ei)) = 0 in Y,

w̃i Y -periodic in y,

which, once again, exists in view of Fredholm’s alternative. Inserting (2.20)
in (2.19) allows us to eliminate the ‘bad’ terms and prove the convergence.

We next present an argument justifying the formal expansion (2.8) under
the additional assumption that the coefficients, f and, hence, the solution
uε are smooth. Under these assumptions it is possible to show that, as
ε → 0, uε → u uniformly in Ū .

To this end, take u1 as in (2.15) with ũ1 ≡ 0 and set

zε = uε − (u + εu1 + ε2u2).

It follows that

Aεzε = −εz̃ε,

with

z̃ε = A2w + A3u1 + εA3u2.

If f is smooth, then u0, u1 and u2 are smooth, and hence

|z̃ε| ≦ C in U.

On the boundary ∂U we have

zε = −(εu1 + ε2u2),

and therefore

|zε| ≦ Cε on ∂U.

It follows from the maximum principle that

|zε| ≦ Cε in Ū

and, finally,

|uε − u| ≦ Cε in Ū .

The general result is as follows.

Theorem 2.1. Assume (2.3) and (2.4) and let uε and u0 be, respectively,
the solutions of (2.1) and (2.17). Then, as ε → 0, uε → u0 weakly in H1

0 .
In addition, uε − u0 − εu1(

·
ε) → 0 strongly in H1

0 , where u1 is the solution
of (2.14).

The proof of the weak convergence follows along the lines discussed earlier.
The strong convergence without the correction εu1 is not true. We refer to
Bensoussan et al. (1978) for an extensive discussion and the detailed proof.
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Next we describe briefly another method, known as two-scale convergence
and developed in Nguetseng (1989) and Allaire (1992), which, in some sense,
blends the asymptotic expansion and energy methods and yields the homog-
enization in one step.

To describe the method it is necessary to introduce some notation. We
write C∞

p (Y ) for the functions in C∞(Rd) that are Y -periodic, while Cp(Y )
is the space of continuous Y -periodic functions. Finally, C∞

c (U ; C∞
p (Y ))

is the space of infinitely smooth and compactly supported functions with
values in C∞

p (Y ).

We say that a family (uε)ε>0 in L2(U) is two-scale convergent to u0 ∈
L2(U × Y ) if, for all ψ ∈ C∞

c (U ; C∞
p (Y )),

lim
ε→0

∫

U
uε(x)ψ

(
x,

x

ε

)
dx =

∫

U

∫

Y
u0(x, y)ψ(x, y) dxdy. (2.21)

We next summarize the key results on two-scale convergence. For each
bounded family (uε)ε>0 in L2(U) there exists a subsequence, still denoted
by uε, and u0 ∈ L2(U × Y ) such that, as ε → 0, uε is two-scale convergent
to u0. Moreover, as ε → 0,

uε → u =

∫

Y
u0(·, y) dy weakly in L2(U),

and, if u0 is smooth, and, as ε → 0,

‖uε‖L2(U) → ‖u0‖L2(U×Y ),

then,

uε(·) − u0

(
·, ·

ε

)
→ 0 strongly in L2(U).

Finally, if (uε)ε>0 is bounded in H1(U), then there exist u ∈ H1(U) and
u1 ∈ L2(U ; H1

p (Y )) such that, up to subsequences, uε and Duε are two-scale
convergent, as ε → 0, to u and Dxu + Dyu1 respectively.

We now sketch how two-scale convergence can be used to study the asymp-
totic behaviour, as ε → 0, of (2.1). All the arguments below work up to
subsequences.

In view of (2.6) and our earlier general results on two-scale convergence,
we know that there exist u0 ∈ H1

0 (U) and u1 ∈ L2(U ; H1
p (Y )) such that uε

and Duε are two-scale convergent to u and Dxu + Dyu1 respectively. The
expectation is that uε should behave as u + εu1(·, ·

ε).
Using test functions such as φ+ εφ1(·, ·

ε) in (2.19), with φ and φ1 smooth
and Y -periodic, yields∫

U
A

(
x

ε

)
Duε ·

[
Dφ(x) + Dyφ1

(
x,

x

ε

)
+ εDxφ1

(
x,

x

ε

)]
dx

=

∫

U
f(x)

[
φ(x) + εφ1

(
x,

x

ε

)]
dx.
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Passing to the limit, as ε → 0, in the definition of two-scale convergence
for Duε gives

∫

U

∫

Y
A(y)[Du(x) + Dyu1(x, y)] · [Dφ(x) + Dyφ1(x, y)] dxdy

=

∫

U
f(x)φ(x) dx.

(2.22)

A straightforward application of the Lax–Milgram theorem implies that
there exists a unique solution (u, u1) of (2.22) in H1

0 (U) × L2(U ; H1
p (Y )).

Hence, the whole family uε and Duε are two-scale convergent to u and
Dxu + Dyu1, respectively. Moreover, it follows by integration that (2.22) is
a variational formulation for the system





−divy(A(y)(Dxu + Dyu1)) = 0 in U × Y,

−divx

[∫

Y
A(y)(Dxu + Dyu1) dy

]
= f in U,

u = 0 on ∂U,

u1(x, ·) Y -periodic in y,

(2.23)

which is equivalent to the usual homogenized and cell problem equations
derived earlier.

To obtain the strong convergence result in Theorem 2.1 using the two-
scale method, it suffices to observe that u1(x, x

ε ) = Dw(x
ε ) · Dxu(x) is in

L2(U) and can be used as a test function for two-scale convergence.

3. Periodic homogenization for linear second-order elliptic

PDEs in non-divergence form

We next consider uniformly elliptic non-divergence-form equations and, in
particular, the problem





Aεuε = −aij

(
x

ε

)
uε

xixj
+

1

ε
bj

(
x

ε

)
uε

xj
= f in U,

uε = 0 on ∂U,

(3.1)

assuming in addition to (2.3) and (2.4) that

b is Y -periodic and bounded. (3.2)

Notice that, if bj = −(aij)yj , then (3.1) is the problem considered in the
previous section.

The behaviour, as ε → 0, of (3.1) can be studied using probabilistic
methodology applied to homogenization (Bensoussan et al. 1978).
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Since it requires considerable terminology, we choose here to present its
pde analogue. We again use the method of asymptotic expansions. We set

Aε = ε−2A1 + ε−1A2 + ε0A3, (3.3)

where 



A1 = −aij(y)∂2
yiyj

+ bi(y)∂yi ,

A2 = −aij(y)∂2
yiyj

− aij(y)∂2
xiyj

+ bi∂xi ,

A3 = −aij(y)∂2
xixj

,

(3.4)

and use the ansatz

uε(x) = u0

(
x,

x

ε

)
+ εu1

(
x,

x

ε

)
+ ε2u2

(
x,

x

ε

)
+ · · · , (3.5)

with u0, u1, u2 periodic in y = x/ε, which leads to the equations




(i) A1u0 = 0,

(ii) A1u1 + A2u0 = 0,

(iii) A1u2 + A2u1 + A3u0 = f.

(3.6)

As in Section 2, it is immediate that, since u0 is assumed to be periodic
in y and A1 is uniformly elliptic, we must have

u0(x, y) = u0(x). (3.7)

Then (3.6(ii)) becomes

A1u1 + b(y) · Du0 = 0. (3.8)

We consider again the adjoint problem
{

A∗
1m = −(aij(y)m)yiyj − divy(bm) = 0 in Y,

m Y -periodic,
(3.9)

which has a unique solution m such that

m > 0 and

∫

Y
m(y) dy = 1. (3.10)

Fredholm’s alternative once again says that (3.8) has a periodic solution
provided the bis satisfy, for each i = 1, . . . , d, the compatibility (centering)
condition ∫

bi(y)m(y) dy = 0. (3.11)

Assuming (3.11) and using the form of A1, we may assume that u1 has
the form

u1(x, y) = −χi(y)u0xi + ũ1(x), (3.12)
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where, for each i = 1, . . . , d, χi satisfies

A1χ
i + bi(y) = 0 in Y and χi is Y -periodic. (3.13)

Then (3.6(iii)) can be rewritten as

A1u2 = f + u0xixj

(
aij − akjχ

i
yk

− akiχ
j
yk

+
1

2
(biχ

j + bjχ
i)

)
. (3.14)

We recall that it is possible to find a solution as long as the right-hand
side of (3.14) is orthogonal to the invariant measure m. This leads to the
homogenized equation

−āijuxixj = f in U, (3.15)

with

āij =

∫

Y
m(y)

[
aij − akjχ

i
yk

− akjχ
j
yk

+
1

2
(biχ

j + bjχ
i)

]
dy.

Direct computations lead to the identity

āij =

∫
m

[
aij + akℓχ

j
yk

χi
yℓ
− akjχ

i
yk

− aijχ
j
yk

]
dy. (3.16)

Using the uniform ellipticity of the aijs it is now possible to show that
the matrix Ā = (āij)1≦i,j≦d is also uniformly elliptic.

It is an instructive exercise, which we leave to the interested reader, to
check that for the simple one-dimensional problem considered in the Intro-
duction, (3.16) is the same as (1.9).

Theorem 3.1. Assume (2.3), (2.4), (3.2) and (3.11). Let uε and u0 be
the solutions of (3.1) and (3.15), respectively. If f ∈ C3(U), then

|uε − u0| ≦ Cε on Ū . (3.17)

We briefly sketch the proof and refer to Bensoussan et al. (1978) for the
details. To this end, we return to the issue of the solvability of (3.14). We
take ũ1 = 0 and write

u2(x, y) = u0xixjχ
ij(y), (3.18)

where the periodic functions χij solve, for i, j = 1, . . . , d,

A1χ
ij = aij − akjχ

i
yk

− akiχ
j
yk

+
1

2
(biχ

j + bjχ
i) − āij . (3.19)

With this choice it is easy to check that

Aεũε = f + εA2u2 + εA3u1 + ε2A3u2 = f + εgε,

with

gε = −aij(χ
kℓ
yi

u0xjxkxℓ
+ χkℓ

yj
u0xixkxℓ

)

+ biχ
kℓu0xixkxℓ

+ aijχ
ℓu0xixjxℓ

− εaijχ
kℓu0xixjxkxℓ

.
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If f is sufficiently smooth, then the solution u of
{
−āiju0xixj = f in U,

u0 = 0 on ∂U,

is also smooth, and thus

|gε| ≦ C on Ū .

Therefore, if we set

zε = uε − ũε,

we see that

Aεzε = εgε in U with zε = −εu1 − ε2u2 on ∂U,

and hence

|zε| ≦ Cε on Ū .

We conclude the discussion by remarking once again that the key step in
the analysis was solving the cell problem. The necessary solvability solution
then leads to the homogenized operator.

4. Nonlinear periodic homogenization

In this section we consider the homogenization of nonlinear equations both
in the variational and non-variational settings. As before, we concentrate on
second-order problems. The approach in the variational setting is based on
the general method of Γ-convergence (see Dal Maso (1993) for the general
theory). The theory for non-divergence-form equations is based on viscosity
solutions and the so-called perturbed test function method (see Lions et al.

(1983) for the first result, and then Evans (1989)).
We begin with the variational setting. The goal is to study the behaviour,

as ε → 0, of functionals of the form

Fε(u) =

∫

U
f

(
x

ε
, Du(x)

)
dx, (4.1)

defined on, for example, W 1,p(U) and their associated calculus of variations
problems

min

{∫

U
f

(
x

ε
, Du

)
dx : u ∈ W 1,p

0 (U)

}
. (4.2)

Functionals and minimization problems like (4.1) and (4.2) model phe-
nomena in continuum mechanics in the presence of micro-structures with ε
the scale of the medium. The integrand f is, typically, the energy density.
For example, Fε may be the stored energy of an elastic material and u a
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deformation, or u may be the difference of potential in a composed material
occupying U .

The main physical question is whether the medium modelled by Fε be-
haves, in the limit ε → 0, as a homogeneous one. If this is the case, then
there must exist an energy density f0, independent of x and U , such that
the minima of (4.2) converge to the minima of

min

{∫

U
f0(Du(x)) dx : u ∈ W 1,p

0 (U)

}
. (4.3)

The convergence of the minimum values and, perhaps, the minimizing
functions of (4.2) are obtained as a consequence of the convergence, as
ε → 0, of (4.1) to the homogenized functional

F0(u) =

∫

U
f0(Du(x)) dx

in the sense of the Γ-convergence introduced by De Giorgi and Franzoni
(1975). The book by Dal Maso (1993) is an excellent reference for the
whole theory of Γ-convergence.

Next we briefly describe some of the basic facts. We begin with the
definition of Γ-convergence on a metric space. Let Fε : X → [0,∞] be
defined on a metric space (X, d). The family (Fε)ε>0 Γ-converges to F , as
ε → 0, if:

(i) for every x ∈ X and every family (xε)ε>0 such that xε → x, as ε → 0,
we have F (x) ≦ lim infε Fε(xε), and

(ii) for every x ∈ X there exists a family (xε)ε>0 such that xε → x, as
ε → 0, and F (x) = limε Fε(xε).

The fundamental result of Γ-convergence says that if (Fε)ε>0 is d-equico-
ercive and Γ-converges on X to F , then

min{F (x) : x ∈ X} = lim inf
ε

{Fε(x) : x ∈ X},

and, moreover, if xε is a minizer of (4.2) and xε → x, as ε → 0, then x is a
minimizer of (4.3).

We now concentrate on the Γ-convergence of functionals of the form (4.1).
To this end, let U be a bounded subset of R

d and p > 1. As far as the
integrand f : U × R

d → R is concerned, it is assumed that




(i) for every ξ ∈ R
d, f(·, ξ) is measurable and Y -periodic,

(ii) for almost every y ∈ R
d, f(y, ·) is convex in R

d,

(iii) for some c > 0, almost every y ∈ R
d and every ξ ∈ R

d,

0 ≦ f(y, ξ) ≦ c(|ξ|p + 1) and f(y, 2ξ) ≦ cf(y, ξ) + c.

(4.4)
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For ε > 0 consider the functional Fε : Lp(U) → [0,∞] defined by

Fε(u) =





∫

U
f

(
x

ε
, Du

)
dx if u ∈ W 1,p(U),

+∞ otherwise,

(4.5)

and let f0 : R
d → [0, +∞) be defined by

f0(ξ) = inf
v∈W 1,p

per (Y )

∫

Y
f(y, ξ + Dv(y)) dy, (4.6)

where W 1,p
per(Y ) denotes the set of all Y -periodic functions in W 1,p

loc (Rd).

Finally, consider F0 : Lp(Rd) → R given by

F0(u) =





∫

U
f0(Du) dx if u ∈ W 1,p(U),

+∞ otherwise.

(4.7)

Theorem 4.1. Assume that f satisfies (4.4) and let F0 be defined by
(4.7) for f0 given by (4.6). Then, for every sequence εn → 0, the sequence
(Fεn)εn>0 Γ-converges to F0.

We now turn our attention to non-variational homogenization problems.
Before we enter into details we point out the main difference between linear
and nonlinear theories. In the methods described in Sections 2 and 3, the
key step was the solvability of the auxiliary cell problems obtained after
expanding. This solvability was accomplished using Fredholm’s alternative
and the invariant measures, which are positive solutions of the adjoint op-
erator. Cell problems also arise in nonlinear problems. In such settings,
however, there is no notion of adjoint operator and Fredholm’s alternative.
It is therefore necessary to solve the cell problem directly.

For definiteness we consider the boundary value problem




F

(
D2uε,

x

ε
, x

)
= 0 in U,

uε = 0 on ∂U.

(4.8)

We assume that

F ∈ C(Sd × R
d × U) is Y -periodic, (4.9)

and 



uniformly elliptic, i.e., there exist λ, Λ > 0 such that,

for all (y, x) ∈ R
d × U and all X, Y ∈ Sd with Y ≧ 0,

λ‖Y ‖ ≦ F (X, y, x) − F (X + Y, y, x) ≦ Λ‖Y ‖,
(4.10)
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where Sd denotes the space of d × d symmetric matrices.
Solutions of (4.8) are understood in the Crandall–Lions viscosity sense.

For completeness we recall the definition below; for details we refer to Cran-
dall, Ishii and Lions (1992).

Definition 4.2. An upper semi-continuous (respectively, lower semi-con-
tinuous) function u is a viscosity subsolution (respectively, supersolution)
of G(D2u, Du, Du, u, x) = 0 in U if, for all smooth φ and all local maximum
(respectively, minimum) points x of u−φ, we have G(D2φ, Dφ, u(x), x) ≦ 0
(respectively, G(D2φ, Dφ, u(x), x) ≧ 0). A continuous function is a solution,
if it is both a subsolution and supersolution.

It turns out that viscosity solutions are the correct class of weak solutions
for fully nonlinear (degenerate) elliptic second-order equations.

We return now to the homogenization of (4.8) and assume, for simplicity,
that F is independent of x. We follow the asymptotic expansion approach
and consider the ansatz

uε(x) = u0

(
x,

x

ε

)
+ εu1

(
x,

x

ε

)
+ ε2u2

(
x,

x

ε

)
+ · · · ,

with u0, u1, u2, . . . , periodic in y. Substituting in (4.8) we find

F

(
1

ε2
D2

yu0 +
1

ε
(D2

yu1 + D2
x,yu0) + D2

xu0 + D2
x,yu1 + D2

yu2 + · · · ,
x

ε

)
= 0.

A heuristic argument based on the ellipticity of F yields that both u0 and
u1 must be independent of y and, hence, the expansion reduces to

F

(
D2

yu2 + D2
xu0,

x

ε

)
= 0.

The goal is then to find u2 so that F (D2
yu2 + D2

xu0,
x
ε ) is a constant

F̄ (D2
xu0) independent of y = x/ε. This leads to the cell problem




for each P ∈ Sd there exists a unique constant F̄ (P )

such that there exists a periodic solution v of

F (P + D2
yv, y) = F̄ (P ) in R

d.

(4.11)

We recall the previous discussion on the fundamental difference between
linear and nonlinear problems. In the linear setting the cell problem is
solved using Fredholm’s alternative, with the constant F̄ (P ) arising as the
necessary compatibility condition for solvability. In the nonlinear problem,
however, Fredholm’s alternative has no meaning and it becomes necessary
to solve (4.11) directly. The cell problem can be thought of as a nonlinear
eigenvalue problem with F̄ (P ) the eigenvalue and the solution v, which is
usually called the corrector, as the eigenfunction.
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The cell problem is solved using the approximate problem

αvα + F (D2vα + P, y) = 0 in R
d,

obtaining appropriate bounds and passing to the limit α → 0. The constant
F̄ (P ) is obtained as the limit of −αvα(0). This step requires non-trivial
arguments from the theory of viscosity solutions which are beyond the scope
of this review. We refer to Lions et al. (1983), Evans (1989), etc., for a
discussion.

It is worth remarking that this approximate problem is not artificial.
Indeed, if

vα(y) = αvα

(
y

α1/2

)
,

then

vα + F

(
D2vα + p,

y

α1/2

)
= 0 in R

d.

If there is homogenization, then, as α → 0, vα → v̄ locally uniformly in
R

d, with

v̄ + F̄ (D2v̄ + P ) = 0 in R
d,

in which case, since v̄ is bounded, we must have v̄ = −F̄ (P ).
To state the result we consider the boundary value problem

{
F̄ (D2u0) = 0 in U,

u0 = 0 on ∂U.
(4.12)

The following was proved in Evans (1989).

Theorem 4.3. Let uε and u0 be, respectively, the solutions of (4.8) and
(4.12), with F̄ given by (4.11). Then, as ε → 0, uε → u0 uniformly in Ū .

The proof is relatively simple, therefore we briefly sketch its main steps.
It is not difficult to show, under some technical assumptions on F , that

there exists C > 0 such that

|uε| ≦ C on Ū .

We define next the so-called ‘relaxed’ half-limit, a very important tool in
the theory of viscosity solutions, introduced by Barles and Perthame (1988).
They are

u∗(x) = lim sup
y→x, ε→0

uε(y) and u∗(x) = lim inf
y→x, ε→0

uε(y).

It is of course immediate that u∗ ≦ u∗ in U . Next we show that u∗

and u∗ are, respectively, sub- and supersolution of (4.12). The comparison
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property of viscosity solutions then yields that we must have u∗ ≦ u∗, and
hence u0 = u∗ = u∗, a fact which yields that, as ε → 0, uε → u0 in U .

We employ the so-called ‘perturbed test function’ method (Evans 1989)
to show that u∗ is a subsolution. The argument for u∗ is similar. We would
like to point out to the reader the similarity of the argument below to one
used for linear equations. The main difference is that, due to the lack of
higher regularity of solutions to fully nonlinear equations, it is not possible
to justify the asymptotics directly. Instead this is done at the level of the
test functions.

Let φ be a test function and suppose that x0 ∈ U is a strict local maximum
of u∗ − φ in B(x0, δ) for some small δ > 0. Moreover, we assume that
u∗(x0) = φ(x0). We argue by contradiction and assume that

F̄ (D2φ(x0)) = σ > 0.

Let ψ be the solution of the cell problem

F (D2
yψ + D2φ(x0), y) = F̄ (D2φ(x0)).

It follows1 that the function

vε(x) = φ(x) + ε2ψ

(
x

ε

)

is a supersolution of

F

(
D2vε,

x

ε

)
≧ 0 in B(x0, δ).

The comparison of viscosity solutions then yields that

uε(x0) − vε(x0) ≦ max
B(x0,δ)

(uε − vε) ≦ max
∂B(x0,δ)

(uε − vε).

Since vε → φ, as ε → 0, we find

u∗(x0) − φ(x0) ≦ max
∂B(x0,δ)

(u∗ − φ),

which is a contradiction, since u∗(x0) = φ(x0) and max∂B(x0,δ)(u
∗ −φ) < 0.

At this point we remark that, if the corrector v is not periodic, which will
be the case in general, it is necessary for the above argument to work as well
as for the uniqueness of F̄ (P ) to obtain correctors which are strictly sub-
quadratic at infinity. This is not always possible: see Lions and Souganidis
(2003).

We also remark that the approach described above can be used to study
the homogenization of several variants of (4.8), including completely degen-
erate (Hamilton–Jacobi) equations.

1 This argument, which is non-rigorous since ψ is not necessarily smooth, can be justified
using arguments from the theory of viscosity solutions.
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5. The random setting

In this section we outline several recent developments to the theory of fully
nonlinear first- and second-order partial differential equations in stationary
ergodic settings. The general problem is the almost sure (a.s. for short)
behaviour, as ε → 0, of the solution of uε of equations of the general form





F

(
D2uε, εD2uε, Duε, uε, x,

x

ε
, ω

)
= 0 in U,

uε = g on ∂U,

(5.1)

where F and g satisfy all the necessary assumptions for (5.1) to have, for
each ε > 0 and ω ∈ Ω, the underlying probability space, a unique viscosity
solution uε(·, ω) ∈ C(Ū ). The key assumptions for the homogenization are
that

F is stationary with respect to (y, ω), (5.2)

and
{

the underlying measure-preserving transformation

τy : Ω → Ω is ergodic.
(5.3)

Recall that a random field ξ is stationary if, for any finite set of points
x1, . . . , xk ∈ R

d and any h ∈ R
d, the distribution of the random vector

ξ(x1 + h), . . . , ξ(xk + h)

does not depend on h. If ξ : R
d×Ω → R is a stationary random field, where

(Ω, µ) is the underlying probability space, then it can be represented in the
form

ξ(x, ω) = ξ̃(τxω),

for some fixed random variable ξ̃ : Ω → R and a measure-preserving trans-
formation τx : Ω → Ω with x ∈ R

d.
A measure-preserving transformation (τx)x∈Rd is ergodic if all translation-

invariant subsets of Ω have probability either zero or one. We shall also say
that a stochastic process is stationary ergodic if it is stationary and the
measure-preserving group is ergodic.

Stationary ergodic media are rather general. The classical periodic and
almost periodic settings can be thought of as special cases. But the general
setting includes other configurations, such as random chessboards with tiles
of arbitrary random size.

The goal is to show that there exists an effective first- or second-order
(depending only on the particular form of F in (5.1)) nonlinearity F̄ such
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that, if u0 ∈ C(Ū) solves

{
F̄ (D2u0, Du0, u0, x) = 0 in U,

u0 = g on ∂U,
(5.4)

then, as ε → 0 and a.s. in ω, uε(·, ω) → u0.
We recall that most of the results in periodic homogenization are based on

the fact that it is possible to solve the associated macroscopic (cell) problem.
In the almost periodic and random settings the macroscopic problem is set
in the whole space. The inherited lack of compactness then creates several
difficulties. In the almost periodic case these difficulties can be overcome
using the fact that such a setting is essentially compact. Exact solutions
of the macroscopic cell problems can be replaced by approximate ones (see
Ishii (1999), Lions and Souganidis (2005a)). The situation is, however, quite
different in the random setting. In general, it is not possible to solve either
exactly or approximately the macroscopic problem. To overcome this very
serious difficulty, it is necessary to develop and follow a different strategy
which makes use of the ergodic theorem and its nonlinear version (the sub-
additive ergodic theorem).

Papanicolaou and Varadhan (1979, 1981), Kozlov (1985), Zhikov (1993)
and Yurinskii (1980, 1982) (see also Jikov et al. (1991)) were the first to con-
sider the problem of homogenizing linear, uniformly elliptic/parabolic opera-
tors. The first nonlinear result in the variational setting was obtained by Dal
Maso and Modica (1986). The homogenization of fully nonlinear, convex,
first-order (Hamilton–Jacobi) equations was considered in Souganidis (1999)
and Rezankhanlou and Tarver (2000). Lions and Souganidis (2005a) stud-
ied the homogenization of, possibly degenerate, viscous Hamilton–Jacobi
equations and Kosygina et al. (2006) considered the same problem but in
the uniformly elliptic/parabolic setting. Lions and Souganidis (2003, 2005a)
showed that the associated macroscopic problems do not have solutions. The
homogenization of fully nonlinear, uniformly elliptic equations was studied
by Caffarelli et al. (2005). Finally, Caffarelli and Souganidis (2008) recently
obtained uniform error estimates for the homogenization of uniformly ellip-
tic problems, which are described in Section 6.

The first problem we consider here is the viscous Hamilton–Jacobi equa-
tion

−ε tr A

(
y

ε
, ω

)
D2uε + H

(
Duε,

x

ε
, ω

)
+ uε = 0 in R

d, (5.5)

where
{

A(·, ω) ∈ C(Sd) and H(·, ·, ω) ∈ C(Rd × R
d)

are stationary ergodic
(5.6)



170 B. Engquist and P. E. Souganidis

and

A is degenerate elliptic and H is coercive and convex. (5.7)

Since A is assumed to be degenerate elliptic, the next theorem yields as a
special case the homogenization of Hamilton–Jacobi equations of the form

H

(
Duε,

x

ε
, ω

)
+ uε = 0 in R

d. (5.8)

The main result is as follows.

Theorem 5.1. There exists H̄ ∈ C(Rd) coercive and convex such that,
if u0 is the solution of u0 + H̄(Du0) = 0 in R

d, then, as ε → 0 and a.s.,
uε(·, ω) → u0 in C(Rd). Moreover,

H̄(p) = inf
φ∈S

sup
y

[
−ε trA(y, ω)D2φ + H(Dφ + p, y, ω)

]
,

where S is the set of continuous random fields ψ that are a.s. strictly sub-
linear at infinity.

The proof of the theorem in Lions and Souganidis (2005a) is based strongly
on the (stochastic) control interpretation of (5.6), which is available due to
the assumptions that H is convex and A independent of Du, and the use of
the (sub-additive) ergodic theorem. For A = I another proof and different
formula for H̄ were obtained in Kosygina et al. (2006). For general A, even
completely degenerate, this formula is generalized in Lions and Souganidis
(2005b). It should be noted that convexity plays absolutely no role in the
periodic/almost periodic settings. What happens without convexity in the
random setting is an open problem. Recently Lions and Souganidis (2008)
obtained a simple proof of Theorem 5.2 which, although it relies on the
convexity of H, does not use the control interpretation at all.

Consider next the boundary value problem




F

(
D2uε, Duε, x,

x

ε
, ω

)
= 0 in U,

uε = g on ∂U,

(5.9)

where

F is stationary ergodic and uniformly elliptic. (5.10)

The main result obtained in Caffarelli et al. (2005) is as follows.

Theorem 5.2. There exists a uniformly elliptic F̄ ∈ C(Sd) such that, if
u0 ∈ C( Ū ) is the solution of F̄ (D2u0, x) = 0 in U and u0 = g on ∂U , then,
as ε → 0, and a.s. in ω, uε(·, ω) → u0 in C( Ū ).
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Moreover, for each (P, x) ∈ Sd × U ,

F (P, x) = lim
R→∞

inf
ψ

sup
|y|≤R

F (D2ψ, x, y, ω),

with the infimum taken over functions which are strictly subquadratic at
infinity.

The proof of Theorem 5.2 is completely different from that of Theo-
rem 5.1. It is based on identifying, for each level µ ∈ R, all the matrices
P ∈ C(SD) such that F̄ (P ) ≦ µ or F̄ (P ) ≧ µ. This is accomplished us-
ing the obstacle problem with quadratic obstacles and studying the ergodic
properties of the contact set.

6. Rates of convergence

We describe here a number of results concerning rates of convergence for
the homogenization of first- and second-order equations.

We begin with periodic Hamilton–Jacobi equations and, in particular, the
problem

uε + H

(
Duε,

x

ε
, x

)
= 0 in R

d. (6.1)

The following result was proved by Capuzzo-Dolcetta and Ishii (2001).

Theorem 6.1. Assume that H is convex, coercive and periodic and let
uε, u0 ∈ C0,1(RN ) be the solutions of (6.1) and the homogenized equation,
respectively. There exists a constant C > 0, depending only on H, such
that

|uε − u0| ≦ C ε1/3.

The rate of convergence for the periodic homogenization of




F

(
D2uε,

x

ε

)
= f in U,

uε = g on ∂U,

(6.2)

was obtained recently by Caffarelli and Souganidis (2008).

Theorem 6.2. Assume that F is uniformly elliptic and periodic and let
uε ∈ C(Ū) and u0 ∈ C0,1(Ū) be, respectively, the solutions of the oscillat-
ing and homogenized equations. There exist α ∈ (0, 1) depending on the
ellipticity constants and the dimension, and C > 0 depending, in addition,
on the Lipschitz constant of u0, such that

|uε − u0| ≦ C εα in Ū .
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The proof of Theorem 6.1 is based on classical arguments from the theory
of viscosity solutions, while Theorem 6.2 is based on a general methodology,
developed in Caffarelli and Souganidis (2007), which is based on regular-
ity results concerning viscosity solutions of uniformly elliptic pdes and the
notion of δ-viscosity solutions.

We turn now to the random setting. Here it is necessary to introduce a
rate of mixing somewhere in the assumptions. To this end, we assume that
the nonlinearity F is strongly mixing with algebraic rate, i.e., we assume
that





there exists φ : [0,∞) → [0,∞) such that φ(r)r−α → 0

for some α > 0 and for all P ∈ Sd and x, y ∈ R
d

|E(F (P, x, ·)F (P, y, ·)) − (EF (P, x, ·))(EF (P, y, ·))|

≦ φ(|x − y|)(EF 2(P, x, ·))1/2(EF 2(P, y, ·))1/2,

(6.3)

where E denotes the expectation in the probability space.
The following result on the linear equation




−aij

(
x

ε
, ω

)
uε

xixj
= f in U,

uε = g on ∂U,

(6.4)

was proved in Yurinskii (1982).

Theorem 6.3. Assume that the matrix A = (aij)1≦i,j≦d is uniformly el-

liptic, stationary and strongly mixing. Let uε, u0 be the solutions of (6.4)
and the homogenized equation respectively. There exist α ∈ (0, 1), depend-
ing only on the ellipticity constant, and C > 0 depending on the ellipticity
constants and the Lipschitz constant of u0, such that

|uε − u0| ≦ C εα on Ū .

Finally, concerning the fully nonlinear equation




F

(
D2uε,

x

ε
, ω

)
= f in U,

uε = g on ∂U,

(6.5)

the following was proved in Caffarelli and Souganidis (2008).

Theorem 6.4. Assume that F is uniformly elliptic, stationary and strongly
mixing with algebraic rate. Let uε ∈ C(Ū) and u0 ∈ C0,1( Ū ) be the so-
lutions of (6.5) and the homogenized equation, respectively. There exist
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positive constants C and c depending on the ellipticity, the Lipschitz con-
stant of F , the dimension, the mixing rate and F , but not ε, such that, for
all ε ∈ (0, 1), there exist Aε ⊂ Ω such that

µ(Aε) ≦ C εc| ln ε|−1/2

and |uε − u0| ≦ C εc| ln ε|−1/2

in Ω \ Aε.

7. Applications

We briefly discuss here a few applications of the homogenization results
presented earlier.

The first application concerns motion of interfaces in random media. A
typical problem is the evolution of the boundary Γt of an open subset Ωt of
R

N with velocity V in the direction of the normal vector n given by

V = −εδ trDn + v

(
n,

x

ε

)
.

Using the level set formulation for generalized front propagation, the prob-
lem reduces to the study of the a.s. behaviour, as ε → 0, of the solution
uε(·, ω) of the corresponding level set pde:





uε
t − εδ tr(I − D̂uε ⊗ D̂uε)D2uε + v

(
D̂uε,

x

ε
, ω

)
|Duε| = 0

in R
N × (0,∞),

uε = u0 on R
N × {0},

(7.1)

where Ω0 = {u0 > 0} and, for p ∈ R
N \ {0}, p̂ = |p|−1p.

There is no known result in the random case for (7.1) if δ �= 0. The
reason is that, in view of the dependence on the gradient, the results of
Lions and Souganidis (2005b) do not apply here. The behaviour of (7.1)
for δ > 0 in the periodic/almost periodic setting was analysed in Lions
and Souganidis (2005b). More recently, Cardaliaguet, Lions and Souganidis
(2008) looked at special cases of (7.1) and studied in detail what happens
when the assumptions of Lions and Souganidis (2005b) are not satisfied.
Finally, some related results were obtained by Dirr, Karali and Yip (2007).

The only known result in the random case obtained in Souganidis (1999)
and Lions and Souganidis (2003) is as follows.

Theorem 7.1. Let δ = 0. Assume that the map p → v(p̂, y)|p| is convex
and |v| ≥ v0 > 0. There exists a convex H̄ ∈ C(RN ) such that, if u0 ∈
UC(RN × [0,∞)) is the unique solution of u0 + H̄(Du0) = 0 in R

N × [0,∞),
then, as ε → 0 and a.s. in ω, uε(·, ω) → u0 in C(RN × [0,∞)). In particular,
as ε → 0, and a.s. in ω, Γε

t → Γ0
t in the Hausdorff metric, where Γ0

t is moving
with normal velocity V = −H̄(n).
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An interesting question is what happens when the velocity v vanishes and
changes sign. Mathematically this is a very challenging problem, since the
positivity of v is critical, at the technical level, for obtaining the necessary
estimates.

The typical problem is the equation




uε
t + v

(
x

ε

)
|Duε| = 0 in R

d × (0,∞),

uε = g on R
d,

(7.2)

which is the level set pde giving the evolution of Ω0 = {x ∈ R
d : u0(x) > 0}

with normal velocity

V = v

(
x

ε

)
.

As far as the velocity v is concerned we assume that

v is Y -periodic and changes sign. (7.3)

The following was proved in Cardaliaguet et al. (2008). We refer to
Craciun and Bhattachayra (2003) for related numerical results.

Theorem 7.2. Assume (7.3). Then, for every R, T > 0, as ε → 0, we have
uε → u0, and

uε → u0 = θg + (1 − θ)u1,

in the weak ∗ convergence sense in L∞(BR×(θ, T )), where θ = |{v < 0}∩Y |
and u1 is the solution of the homogenized equation with velocity v+.

The heuristics behind the result is that the front cannot penetrate the
{v < 0} region while it keeps propagating in all places. As a result it wraps
around {v = 0} and eventually keeps going ‘leaving a piece behind’. This
latter phenomenon is characterized by the weak convergence.

The next example is about large deviations of diffusion processes in ran-
dom environments. This is a very general topic, which cannot be discussed
in any generality here. Instead we present a special case. Giving any refer-
ences is beyond the scope of this paper.

Consider the diffusion process (Xε
t )t≧0 which evolves according to the sde





dXε
t = b

(
Xε

t

ε
, ω

)
+

√
2εΣ

(
Xε

t

ε
, ω

)
dBt (t > 0),

Xε
0 = x,

where (Bt)t≧0 is a standard M -dimensional Brownian motion on a different

probability space (Ω0, F0, P0), b is a Lipschitz-continuous stationary ergodic
vector field and Σ is a Lipschitz-continuous and stationary ergodic d × M
matrix.
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The medium is modelled by the stationary ergodic potential V : R
d ×

Ω → [0,∞) and the behaviour of the diffusion is governed by the weighted
probability

Qε
t,ω(dω0) = S−1

t,ω exp

{
−ε−1

∫ t

0
V

(
Xε

s

ε
, ω

)}
P0(dω0),

where St,ω is a normalizing factor.
To formulate a typical large-deviation result it is necessary to consider,

for v0 ∈ BUC(RN ), the initial value problem




vε
t − ε tr(ΣΣT )

(
x

ε
, ω

)
D2vε + H(Duε,

x

ε
, ω) = 0 in R

N × (0,∞),

vε = v0 on R
N × {0},

where, for (p, y, ω) ∈ R
N × R

N × Ω,

H(p, y, ω) = tr((ΣΣT )(y, ω)p ⊗ p) − b(y, ω) · p − V (y, ω). (7.4)

Theorem 5.1 applied to this equation yields the existence of H̄ : R
N → R

such that, if v̄ ∈ BUC(RN × [0,∞)) solves v̄t + H̄(Dv̄) = 0 in R
N × [0,∞)

with v̄ = v0 on R
N , then, as ε → 0 and a.s. in ω, vε → v̄ in C(RN ).

As a consequence the following large-deviation principle holds.

Theorem 7.3. Let L̄ be the convex dual of the effective Hamiltonian H̄
corresponding to (7.4). For any Borel subset A of R

N with interior A0 and
a.s. in ω,

−t inf
A0

L̄(t−1(x − y)) ≦ lim
ε→0

ε log Qt,ω(Xε
t ∈ A)

≦ lim
ε→0

ε log Qt,ω(Xε
t ∈ A) ≦ −t inf

y∈A

[
L̄(t−1(x − y)).

]

Another application is related to combustion and the propagation of fronts
arising as asymptotic limits of reaction–diffusion equations in a random
environment. The particular problem of interest is the a.s. asymptotics, as
ε → 0, of the solution uε of the KPP-type equation





uε
t − Lεuε = ε−1f

(
uε,

x

ε
, ω

)
in R

N × (0, T ),

uε = g on R
N × {0}.

Here Lε is a general second-order uniformly elliptic operator

Lεv = −ε tr A

(
x

ε
, ω

)
D2v + b

(
x

ε
, ω

)
· Dv,

with A(·, ω) ∈ C0,1(Sd) and, b(·, ω) ∈ C0,1(Rd) stationary ergodic and
f(·, ·, ω) ∈ C0,1(R × R

d).
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The nonlinearity f is assumed to be of KPP-type, i.e.,
{

f(0, y, ω) = f(1, y, ω) = 0, f(u, y, ω) > 0 if u ∈ (0, 1), and

f(u, y, ω) ≦ c(y, ω)u with c(y, ω) = fu(0, y, ω).

Theorem 7.4. There exists H̄ such that, as ε → 0 and a.s. in ω, locally
uniformly in R

N × (0,∞) and exponentially fast,

uε(x, t, ω) →
{

1 in int{v̄ = 0},
0 in {v̄ > 0},

where v̄ is the unique viscosity solution of the variational inequality




min[v̄t + H̄(Dv̄, x), v̄] = 0 in R
N × (0,∞),

v̄ =

{
0 in {g > 0},
+∞ in {g < 0}.

We conclude with an example concerning the homogenization of a linear
transport equation. Although we did not discuss such equations, we include
this discussion here as an example of the fact that the homogenized equa-
tion may develop futures not existing at the level ε of the oscillations. In
particular we present a simple hyperbolic example where the homogenized
equation contains an integral term describing a memory effect.

Consider the 2D-linear advection equation

uε
t (x, y, t) + aε(y)uε

x(x, y, t) = 0,

with initial conditions u(x, y, 0) = g(x, y) and aε bounded. This simple
model helps in explaining certain fingering effects of flow in layered subsur-
face reservoirs (Hou 2003)

It is easy to write the solution explicitly,

uε(x, y, t) = g(x − aε(y), t, y),

but not as simple to derive the homogenized solution for the weak limit u0

of uε.
Using the Laplace transform, Tartar (1989) showed that the weak limit

satisfies the initial value problem

u0
t + a(y)u0

x =

∫ t

0

∫ ∞

−∞

∂2

∂x2
u0(x − λ(t − s), y, s) dµy(λ) ds,

u0(x, y, 0) = g(x, y),

where a(y) is the weak limit of aε(y) and µy is the Young measure of aε(y),
as ε → 0.
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8. Numerical homogenization

Very often there is no known closed form of the homogenized or effective
equations but we may still be in a situation where such an equation exists.
The option is then to use numerical techniques to generate the homogenized
equation or the effect of using a homogenized equation. The goal would typ-
ically be that of numerically solving a differential equation, which involves
a wide range of scales. If the range of scales is very large the computational
cost of direct numerical solution is prohibitive and some approximation is
needed.

Let us briefly comment on the computational complexity. Consider a
differential equation with the size of the domain of the independent variables
of order one. Let the problem be of the type discussed in this paper, where
material fluctuations with wave length O(ε) produce a solution that also
has oscillations with wave length O(ε).

We also know from the asymptotic analysis of the earlier sections that
the detailed interaction of oscillations is essential for the structure of the
homogenized equation. This means that a direct numerical method must
accurately represent the oscillations. From the Shannon sampling theorem
(Shannon 1949), we then see that the number of unknowns must at least
be of order O(ε−d), where d is the dimension of the space of independent
variables.

There are basically four classes of numerical multi-scale methods:

(1) the classical numerical multi-scale methods that aim to solve the full
problem efficiently,

(2) generation of the effective equation by numerical solutions of cell
problems,

(3) techniques that start from the original full problem and generate a
reduced model,

(4) methods that on the finest scale only sample the original problem in
order to reduce the overall computational complexity.

In class (1) we have, for example, the well-established methods of multi-
grid and the fast multi-pole method. The discretized full problem with
all scales is solved efficiently such that the computational cost is essentially
proportional to the number of unknowns. There is a weak relation to homog-
enization in multi-grid methods in that the coarse-grid operator should ap-
proximate the homogenized differential equation (Engquist and Luo 1997).
For the fast multi-pole method the far-field interaction is described by low-
dimensional operators for which averaging plays a role. These methods are,
however, not as closely related to homogenization as the methods we will
focus on, and they will not be further discussed here.
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For class (2) we assume it is known that there exists a homogenized equa-
tion based on the solution of cell problems. If there is no explicit formula
for the cell problem solution it is natural to approximate that solution nu-
merically. If the material properties are periodic this technique obviously
applies. For more general settings it is still practically useful, as in the work
of Durlofsky on homogenization or upscaling in oil reservoir modelling. See,
for example, the discussion in Durlofsky (1998). The computational domain
is divided into subdomains and a local cell problem is solved in each subdo-
main. The cell problems are solved by fine discretizations that resolve any
oscillation and the solution is then used to define a global effective equation,
which can be solved numerically on a coarser grid.

In class (3) the computational cost is at least as large as in (1), but the
goal is now to generate a simplified problem that can then efficiently be
solved many times. This simplified problem can have significance in itself
or it can be used, for example, in control applications. The so-called model
reduction techniques belong to this class.

A typical model reduction problem starts by a system of ordinary differ-
ential equations describing the state x(t) and output y(t) for a given input
or control signal u(t):

dx(t)

dt
= Ax(t) + Bu(t), x ∈ R

n, u ∈ R
m

y(t) = Cx(t) + Du(t), y ∈ R
p, n ≫ m, p.

The n × n matrix A is assumed to be very large and the goal is to re-
place this system with a reduced one. The reduced system should have a
much lower dimension n but approximately the same relation between u
and y for a relevant set of u-values. The large size of A typically originates
from a discretization of a differential operator in space that may describe a
multi-scale problem of the type discussed in this paper. For this type and
related problems there is extensive literature: see, for example, Obinata and
Anderson (2001).

The multi-scale finite element method (MSFEM) also belongs to this
class. It was originated by Babuška (see, for example, Babuška, Caloz and
Osborn (1994)), and further refined by Hou (see, for example, Hou (2003)).
In this approach a numerical cell problem is not used to determine an ef-
fective equation but to generate new finite element basis functions. These
basis functions cover a domain of several oscillations. Hou and others have
successfully applied MSFEM to oil reservoir modelling problems (Hou 2003).

Projection-based numerical homogenization, which is briefly discussed in
the next section, is another technique that belongs to this class.

In class (4) the computational cost for direct solution of the full problem
is too large and resolution of the finest scale can only be done in selected



Asymptotic and numerical homogenization 179

domains. The heterogeneous multi-scale method, or HMM (Engquist et al.

2007), is a framework for this class, and HMM is presented in Section 10.
Another similar strategy is the equation-free technique by Kevrekidis et al.

(2003). Both these methods rely on refined numerical approximation over
sampled domains.

It should be pointed out that there is a strong similarity between the
analytical homogenization described in the earlier sections and some of the
numerical methods below. For example, projection-based numerical homog-
enization uses averaging, and adds a high-frequency correction term. The
solution of cell problems is central to the heterogeneous multi-scale method
and to some of the methods briefly mentioned above.

9. Projection-based numerical homogenization

In projection-based homogenization the fully discretized problem is pro-
jected onto a lower-dimensional space. The number of unknowns will be
lower and the relevant operator condensed. Early work along these lines
using wavelets were presented in Beylkin and Brewster (1995), Dorobantu
and Engquist (1998) and Gilbert (1998), but we will follow the development
as given in Andersson, Engquist, Ledfelt and Runborg (1999) and Engquist
and Runborg (2001, 2001). Consider first the simple two-point boundary
value problem that was introduced in Section 1,

{
−(aε(x)uε

x)x = f in (0, 1),

uε(0) = uε(1) = 0,

aε(x) = a(x/ε) > 0, a(y) is 1-periodic.

(9.1)

Let us approximate this problem by centred divided differences,

Lε
huε

h =
1

h

(
aε(xj+1/2)

uj+1 − uj

h
− aε(xj−1/2)

uj − uj−1

h

)
= fh, (9.2)

for j = 1, 2, . . . , J − 1,

where u0 = uJ = 0 and

xj = jh, j = 0, 1, . . . , J and Jh = 1.

Here

uε,h = (u1, u2, . . . , uJ−1)
T and fh =

(
f(x1), f(x2), . . . , f(xJ−1)

)T
,

and the linear operator Lε,h can be viewed as a finite difference operator or
as a (J − 1) × (J − 1) matrix.

Our goal, as in general model reduction, is to transform (9.2) into a lower-
dimensional problem that is easier to solve. In the example above the best
way would be to use the homogenized equation (9.1) and discretize that.
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The stepsize h could then be chosen without consideration of the small wave
length ε in the oscillations.

In general we do not have access to an explicit homogenized form of the
equation and a fully numerical process is needed. We first outline a pro-
jection process for homogenization of the original ∞-dimensional problem
that easily can be adjusted to finite-dimensional applications, for example
of the form (9.2).

Consider an equation Lu = f where L is a linear operator, f a right-hand
side and u a solution that contains fine scales. Let P be a projection operator
onto a subspace where the fine scales in the original solution do not exist.
Our objective is to find the (projection-generated) homogenized operator L̄
such that L̄Pu = f for all f such that Pf = f . (When Pf �= f we also
need to find the homogenized right-hand side f̄ .) We confine ourselves to
the case of Hilbert spaces.

Let X be a Hilbert space of functions, typically a Sobolev space. Let
X0 ⊂ X be a closed subspace representing the coarse part of the functions,
and denote by Px the orthogonal (and symmetric) projection operator in
X onto X0. Let the spaces X0 and X⊥

0 inherit the inner product and norm
of X, so that ‖u‖X = ‖u‖X0

and (u, v)X = (u, v)X0
when u, v ∈ X0, and

similarly for X⊥
0 . In addition, set Qx = Ix − Px, where Ix is the identity

operator in X, and introduce the unitary operator Wx on X defined by

Wx : X → X⊥
0 × X0, Wxu =

(
Qxu

Pxu

)
. (9.3)

In the same way, define the corresponding operators Py, Qy and Wy

for another Hilbert space Y with subspace Y0. Let L(X, Y ) be the set of
bounded linear maps from X to Y . For an operator L ∈ L(X, Y ), we have

WyLW∗
x

(
u

v

)
= WyL(Px + Qx)(u + v) =

(
QyL(Px + Qx)(u + v)

PyL(Px + Qx)(u + v)

)

=

(
QyL(Pxv + Qxu)

PyL(Pxv + Qxu)

)
≡

(
A B
C D

) (
u

v

)
,

(9.4)

where

A = QyLQx ∈ L(X⊥
0 , Y ⊥

0 ), B = QyLPx ∈ L(X0, Y
⊥
0 ),

C = PyLQx ∈ L(X⊥
0 , Y0), D = PyLPx ∈ L(X0, Y0).

(9.5)

When A is invertible the following definition can be stated.

Definition 9.1. Suppose L ∈ L(X, Y ) and f ∈ Y . When A in (9.4), (9.5)
is invertible (one-to-one and onto), we define the homogenized operator
L̄ : X0 → Y0 as the Schur complement with respect to the decomposition
in (9.4),

L̄ = D − CA−1B, (9.6)
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and the homogenized right-hand side as

f̄ = Pyf − CA−1Qyf. (9.7)

We will write L̄X,X0
and f̄X,X0

when there is a need to display explicitly
between which spaces the homogenization step is made. From Definition 9.1
we immediately have the following result.

Lemma 9.2. Suppose Lu = f , where L ∈ L(X, Y ), u ∈ X and f ∈ Y . If
A−1 exists,

L̄Pxu = f̄ . (9.8)

Proof. Since Lu = f , we get

WyLW∗
xWxu = Wyf ⇒

(
A B
C D

)(
Qxu
Pxu

)
=

(
Qyf
Pyf

)
. (9.9)

Moreover, since A is invertible, this system can be reduced with Gaussian
elimination. It yields (9.8).

The homogenized operator expressed in terms of projections takes the
form

L̄ = D − CA−1B = PLP − PLQ(QLQ)−1QLP.

In the elliptic case, there is a striking similarity between the Schur com-
plement in Definition 9.1 and the classical homogenized operator in (2.18),
repeated here for convenience:

PLP − PLQ(QLQ)−1QLP, (9.10)

∇
(∫

Id

G(y) dy

)
∇−∇

(∫

Id

G(y)
dχ(y)

dy
dy

)
∇. (9.11)

Both are written as the average of the original operator minus a correc-
tion term, which is computed in a similar way for both operators. For the
analytic case, a local elliptic cell problem is solved to get G∂yχ, while in
the projection case, a positive operator A = QLQ defined on a subspace
is inverted to obtain LQA−1B. The average over the terms is obtained by
integration in the analytical case, and by applying P in the projection case.

In the practical and computational setting L and u are finite-dimensional
as in the model problem (9.2). A natural way to define the projections
discussed above is to use a wavelet basis. Discrete and coarse scales are well
defined and the localization properties of wavelets are also practical (Beylkin
and Brewster 1995, Engquist and Runborg 2001). In the definition of L̄
above, B, C and D are sparse matrices approximating differential operators.
The matrix A−1 is dense but well approximated by a sparse matrix (Beylkin,
Coifman and Rokhlin 1991). This means that L̄ is an approximation of a
sparse matrix and can be seen as a numerical homogenization.
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10. The heterogeneous multi-scale method

The heterogeneous multi-scale method (HMM) is a framework for develop-
ing and analysing numerical techniques that couple different models with
different ranges of scales in the same simulation. It was first introduced by
E and Engquist (2003a). See also the shorter and less technical presenta-
tion in E and Engquist (2003b) and the more extensive survey in Engquist
et al. (2007).

Let us turn to the structure of HMM. The general setting is as follows.
We are given a microscopic system whose state variable is denoted by u,
together with a micro-model, which can be abstractly written as

f(u, d) = 0, (10.1)

where d is the data given by auxiliary conditions, such as initial and bound-
ary conditions for the problem. We are not interested in the microscopic
details of u, but rather the macroscopic state of the system, which we denote
by U . It satisfies some abstract macroscopic equation:

F (U, D) = 0, (10.2)

where D stands for the macroscopic data that are necessary for the model
to be complete. We could here view (10.1) as the original problem with an
ε-scale and view (10.2) as the effective or homogenized equation. Note that
F does not need to be known.

Let Q denote the compression operator that maps u to U , and let R be
any operator that reconstructs u from U , that is,

Qu = U, RU = u. (10.3)

Thus Q and R should satisfy QR = I, where I is the identity operator. Q is
called a compression operator instead of a projection operator since it can
be more general than projection, e.g., it can be a general coarse-graining
operator, as in bio-molecular modelling. The terminology of reconstruc-
tion operator is adopted from Godunov schemes for nonlinear conservation
laws (LeVeque 1990) and gas-kinetic schemes (Xu and Prendergast 1994).
Compression and reconstruction operators are similar to the projection and
prolongation operators used in multi-grid methods, or the restriction and
lifting operators in Kevrekidis et al. (2003).

Examples of Q and R were in given in E and Engquist (2003a). The goal
of HMM is to compute U using the abstract form of F and the micro-scale
model. It consists of two main components.

1. Selection of a macroscopic solver

Even though the macroscopic model is not available completely or is invalid
on part of the computational domain, any available knowledge of the form
of F is used to select a suitable macroscopic solver.
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2. Estimating the missing macro-scale data D using the micro-scale model

This is typically done in two steps.

(a) Constrained micro-scale simulation. At each point where some macro-
scale data are needed, perform a series of constrained microscopic sim-
ulations. The micro-scale solution needs to be constrained so that it is
consistent with the local macroscopic state, i.e., d = d(U). In practice,
this is often the most important technical step.

(b) Data processing. Use the micro-scale data generated from the micro-
scopic simulations to extract the needed macro-scale data.

Data estimation can be performed either ‘on the fly’ or in a pre-processing
step. The latter is often advantageous if the needed data depend on very
few variables. Before we turn to concrete examples, we should emphasize
that HMM is not a specific method: it is a framework for designing meth-
ods. For any particular problem, there is usually a considerable amount of
work, such as designing the constrained microscopic solvers, that is neces-
sary to turn HMM into a specific numerical method. In the remainder of
this section, we will discuss examples of how HMM can be used for some
relatively simple problems.

Let us first discuss the elliptic problem of Section 3. Consider the 2D
case, 



−

(
aij

(
x

ε

)
uε

xj

)

xi

= f in U,

uε = 0 on ∂U.

(10.4)

Here ε is a small parameter that signifies explicitly the multi-scale nature
of the coefficients. It is the ratio between the scale of the coefficient and the
scale of the computational domain D. Here we present an approach based
on the finite volume method. This is a simplified version of the methods
presented in Abdulle and E (2003). Similar ideas can also be found in
Durlofsky (1991).

As the macro-scale solver, we choose a finite volume method on a macro-
scale grid, and we will let ∆x,∆y be the grid size. The grid points are at
the centre of the cells, and the fluxes are defined at the boundaries of the
cells. The macro-scale scheme is simply that on each cell, the total fluxes
are balanced by the total source or sink terms,

−Ji− 1
2
j + Ji+ 1

2
j − Ji,j− 1

2

+ Ji,j+ 1
2

=

∫

Ki,j

f(x) dx. (10.5)

Here K denotes the (i, j)th cell.
The data that need to be estimated are the fluxes. This is done as follows.

At each point where the fluxes are needed, we solve the original micro-scale
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model (10.4) on a square domain of size δ, with the following boundary con-
dition: uε(x)−U(x) is periodic, where U(x) is a linear function constructed
from the macro-state at the two neighbouring cells; e.g., for computing
Ji+1,j , we have

U(x, y) =
1

2
(Uj,k + Uj+1,k) +

Uj+1,k − Uj,k

∆x
(x − xj+ 1

2

)

+
Uj+1,k+1 − Uj,k+1 − (Uj+1,k−1 − Uj,k−1)

4∆y
(y − yk).

(10.6)

We then use

Jj+ 1
2
,k =

1

δ2

∫

Iδ

jε
1 dx, Jj,k+ 1

2

=
1

δ2

∫

Iδ

jε
2 dx, Uj+1,k − Uj,k, (10.7)

where (jε
1(x), jε

2(x)) = (a1ku
ε
xk

, a2ku
ε
xk

), to compute an approximation to the
needed flux. The periodic boundary condition for the micro-scale problem
is not the only choice: other boundary conditions might be used. A more
thorough discussion is found in Yue and E (2008). To reduce the influence
of the boundary conditions, a weight function can be inserted in (10.7).

To implement this idea, note that the Js are linear functions of {Ui,j}.
Therefore to compute the fluxes, we first solve the local problems with
U replaced by the nodal basis functions: Φℓ,m is the nodal basis function
(vector) associated with the (ℓ, m)th cell if Φℓ,m is zero everywhere except at
the (ℓ, m)th cell where it is 1. For each such basis function, there are only a
few local problems that need to be solved, since the basis function vanishes
on most cells. Since U can be written as a linear combination of these nodal
basis functions, the fluxes corresponding to U can also be written as a linear
combination of the fluxes correspond to these nodal basis functions. In this
way, (10.5) is turned into a system of linear equations for U .

Now how do we choose δ? Clearly the smaller the δ, the less costly
the algorithm. If the original problem (10.4) has scale separation, i.e., the
micro-scale length ε is much smaller than O(1), then we can choose δ such
that ε ≪ δ ≪ 1. This results in savings of cost for HMM, compared with
solving the original micro-scale problem on the whole domain D.

The correctors in the homogenization theory describe the low-frequency
contribution from interaction of highly oscillatory functions. That interac-
tion is represented by the micro-scale problems in the δ-domains. There is
a natural correspondence to the analytic cell problems.

We chose to use a finite volume method for our standard elliptic equation
as the first example because it gives a good background for the following
examples: a finite element method for the elliptic equation and a finite
volume method for nonlinear conservation laws.

In the finite element approximation of (10.4), the macro-scale solver can
be chosen simply as the standard C0 piecewise linear finite element method
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over a macroscopic triangulation TH of mesh size H. We will denote by XH

the macroscopic finite element space which could be the standard piecewise
linear finite elements over TH .

The data that need to be estimated from the micro-scale model are con-
tained in the stiffness matrix on TH : A = (Aij), where

Aij =

∫

Ω
∇Φi(x)Ā(x)∇Φj(x) dx. (10.8)

Here Ā(x) is the homogenized conductivity tensor and {Φi(x)} are the basis
functions for XH . Had we known Ā(x), we could have evaluated Aij simply
by numerical quadrature: if fij(x) = ∇Φi(x)Ā(x)∇Φj(x), then

Aij =

∫

Ω
fij(x) dx ≃

∑

T∈TH

|T |
∑

xk∈T

ωkfij(xk), (10.9)

where {xk} and {ωk} are the quadrature points and weights respectively,
while |T | is the area of the element T .

In the absence of explicit knowledge of Ā(x), our problem reduces to the
approximation of the values of {Ā(xk)}. This will be done by solving the
original micro-scale model locally around each quadrature point {xk}.

Let Iδ(xk) ∋ xk be a square of size δ. Consider

−
(

aij

(
x

ε

)
φε

xj

)

xi

= 0, x ∈ Iδ(xk). (10.10)

The main objective is to probe efficiently the micro-scale behaviour under
the constraint that the average gradient of the solution φε is fixed to be a
given constant vector. Having solutions to this local problem, we can define
the effective conductivity tensor at xk by the relation

〈
A

(
x

ε

)
∇φε

〉

Iδ

= Ā(xk)〈∇φε〉Iδ
, (10.11)

where 〈v〉Iδ
= (1/|Iδ|)

∫
Iδ

v(x) dx. The basis of this procedure is the theory
of Section 2. The homogenization theorems allow us to define the effective
(or homogenized) conductivity tensor, by considering the infinite volume
limit of the solutions of the micro-scale problem subject to the constraint
that the average gradient remains fixed. The effective tensor is defined by
an average relation of the type (10.11) in the infinite volume limit, i.e.,

L =
δ

ε
→ ∞.

In the special case when the micro-structure is periodic, the infinite volume
problem reduces to a periodic problem.

Let us now consider the coupling between gas dynamics on the macro-
scale and molecular dynamics (MD) on the micro-scale. The macroscopic
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equations are the usual conservation laws of density, momentum and energy.
In one dimension, it can be expressed in a generic form:

∂tu + ∂xf = 0. (10.12)

Here f is the flux. Traditional gas dynamics models assume that f is a known
function of u. Here we do not make that assumption. Instead we will extract
f from an underlying atomistic model, namely, molecular dynamics (MD).

As the macro-scale solver, we select a finite volume method. One example
is the Lax–Friedrichs scheme on a staggered grid:

u
n+1
j+1/2 =

u
n
j + u

n
j+1

2
− ∆t

∆x
(fn

j+1 − f
n
j ). (10.13)

The data that need to be estimated from MD are again the fluxes. This is
done by performing a constrained MD simulation locally at the cell bound-
aries, which are the cell centres for the previous time step. The constraints
are that the average density, momentum and energy of the MD system
should agree with the local macro-state at the current time step n. This is
realized by initializing the MD with such constraints and applying the pe-
riodic boundary condition afterwards. Using the Irving–Kirkwood formula,
which relates the fluxes to the MD data, we can then extract the macro-
scale fluxes by time-averaging the MD data. Ensemble averaging may also
be used.

In this way we can rely on the more fundamental equations of molecular
dynamics rather than on a flux function based on an empirical equation of
state. Note that the micro-scale solver here plays the role of a Riemann
solver in a standard conservation law scheme.

Remark. Recall the connection between projection-based and analytic ho-
mogenization. In both methods the homogenized operators were derived
from a direct averaging and a correction for the high-frequency interac-
tion. The correction involved the solution of a cell problem in the analytic
case and the solution of a system of linear equations for the wavelet-based
methodology. Here with HMM there is no such decomposition into aver-
aging and correction, but the notion of a cell problem is quite clear. It is
in the localized micro-scale problem where the high-frequency interaction is
resolved and then transmitted to the model for the coarse scale. The com-
pression steps typically include averaging, but that averaging step is taken
after the local or cell problem is solved.
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Ann. Inst. H. Poincaré, Anal. Nonlineaire 22, 667–677.

P.-L. Lions and P. E. Souganidis (2005b), ‘Homogenization for “viscous” Hamilton–
Jacobi equations in stationary, ergodic media’, Comm. Partial Differential

Equations 30, 335–376.
P.-L. Lions and P. E. Souganidis (2008), Homogenization of Hamilton–Jacobi and

viscous Hamilton–Jacobi equations in stationary, ergodic environments revis-
ited. Preprint.

P.-L. Lions, G. Papanicolaou and S. R. S. Varadhan (1983), Homogenization of
Hamilton–Jacobi equations. Unpublished.

V. A. Marchenko and E. Y. Khruslov (2006), Homogenization of Partial Differential

Equations, Vol. 46 of Progress in Mathematical Physics, Birkhäuser.
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L. Tartar (1989), Nonlocal effects induced by homogenization. In PDE and Calculus

of Variation, Birkhäuser, pp. 925–938.
K. Xu and K. H. Prendergast (1994), ‘Numerical Navier–Stokes solutions from gas

kinetic theory’, J. Comput. Phys. 114, 9–17.
X. Y. Yue and W. E (2008), ‘The local microscale problem in the multiscale mod-

elling of strongly heterogeneous media: Effect of boundary conditions and
cell size’, J. Comput. Phys., to appear.

V. V. Yurinskii (1980), ‘On the homogenization of boundary value problems with
random coefficients’, Sibir. Matem. Zh. 21, 209–223. English translation:
Siber. Math. J. 21 (1981), 470–482.

V. V. Yurinskii (1982), ‘On the homogenization of non-divergent second order
equations with random coefficients’, Sibir. Matem. Zh. 23, 176–188. English
translation: Siber. Math. J. 23 (1982), 276–287.

V. V. Zhikov (1993), ‘Asymptotic problems related to a second-order parabolic
equation in nondivergence form with randomly homogeneous coefficients’
(Russian), Differentsial’nye Uravneniya 29, 859–869. English translation:
Differential Equations 29 (1993), 735–744.


